Formation of oxysterols during oxidation of low density lipoprotein by peroxynitrite, myoglobin, and copper.
نویسندگان
چکیده
Oxidation of low density lipoprotein (LDL) in the artery wall leads to the formation of cholesterol oxidation products that may result in cytotoxicity. Different mechanisms could contribute to LDL oxidation in vivo resulting in characteristic and specific modification of the cholesterol molecule. Alternatively, attack on cholesterol by chain propagating peroxyl radicals could result in the same distribution of oxidation products irrespective of the initial pro-oxidant mechanism. To distinguish between these possibilities we have monitored the formation of nine oxysterols during LDL oxidation, promoted by copper, myoglobin, peroxynitrite, or azo bis amidino propane. Regardless of the oxidant used, the pattern of oxysterol formation was essentially the same. The yields of products identified decreased in the order 7-oxocholesterol > 7 beta-hydroxycholesterol > 7 alpha-hydroxycholesterol > 5,6 beta-epoxycholesterol > 5,6 alpha-epoxycholesterol except in the case of peroxynitrite in which case a higher yield of 5, 6 beta-epoxycholesterol relative to 7-oxocholesterol was found. No formation of cholestane 3 beta, 5 alpha, 6 beta-triol, or the 24-,25-,27-hydroxycholesterols was seen. Concentration of 7-oxocholesterol levels in LDL was positively correlated with the degree of protein modification. Endogenous alpha-tocopherol in LDL or supplementation with butylated hydroxytoluene prevented oxysterol formation. Taken together these data indicate that the oxidation of cholesterol and protein in LDL occur as secondary oxidation events consequent on the attack of fatty acid peroxyl/alkoxyl radicals on the 7-position of cholesterol, and with amino acids on apoB. Furthermore, oxidant processes with atherogenic potential, such as peroxynitrite, copper, and myoglobin are capable of producing oxidized LDL containing cytotoxic mediators.
منابع مشابه
Effect of Lycopene on Formation of Low Density Lipoprotein-Copper Complex in Copper Catalyzed Peroxidation of Low Density Lipoprotein, as in vitro Experiment
Background: A great deal of evidence has indicated that oxidatively modified LDL plays a critical role in the initiation and progression of atherosclerosis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper ions to LDL is usually thought to be a prerequisite for LDL oxidation by copper...
متن کاملThe Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein
The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...
متن کاملThe Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein
The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...
متن کاملComparative Effects of Copper, Iron, Vanadium and Titanium on Low Density Lipoprotein Oxidation in vitro
Oxidation of low density lipoprotein (LDL) has been strongly implicated in the phathogenesis of atherosclerosis. The use of oxidants in dietary food stuff may lead to the production of oxidized LDL and may increase both the development and the progression of atherosclerosis. The present work investigated the effects of some elements including: copper (Cu), iron (Fe), vanadium (V) and titanium (...
متن کاملGlucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein
Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 37 11 شماره
صفحات -
تاریخ انتشار 1996